Impact of Computed Tomography

Image

The term “computed tomography”, or CT, refers to a computerized x-ray imaging procedure in which a narrow beam of x-rays is aimed at a patient and quickly rotated around the body, producing signals that are processed by the machine’s computer to generate cross-sectional images—or “slices”—of the body. These slices are called tomographic images and contain more detailed information than conventional x-rays. Once a number of successive slices are collected by the machine’s computer, they can be digitally “stacked” together to form a three-dimensional image of the patient that allows for easier identification and location of basic structures as well as possible tumors or abnormalities.

Unlike a conventional x-ray—which uses a fixed x-ray tube—a CT scanner uses a motorized x-ray source that rotates around the circular opening of a donut-shaped structure called a gantry. During a CT scan, the patient lies on a bed that slowly moves through the gantry while the x-ray tube rotates around the patient, shooting narrow beams of x-rays through the body. Instead of film, CT scanners use special digital x-ray detectors, which are located directly opposite the x-ray source. As the x-rays leave the patient, they are picked up by the detectors and transmitted to a computer.

Each time the x-ray source completes one full rotation, the CT computer uses sophisticated mathematical techniques to construct a 2D image slice of the patient. The thickness of the tissue represented in each image slice can vary depending on the CT machine used, but usually ranges from 1-10 millimeters. When a full slice is completed, the image is stored and the motorized bed is moved forward incrementally into the gantry. The x-ray scanning process is then repeated to produce another image slice. This process continues until the desired number of slices is collected.

CT scans can diagnose possibly life-threatening conditions such as hemorrhage, blood clots, or cancer. An early diagnosis of these conditions could potentially be life-saving. However, CT scans use x-rays, and all x-rays produce ionizing radiationIonizing radiation has the potential to cause biological effects in living tissue. This is a risk that increases with the number of exposures added up over the life of an individual. However, the risk of developing cancer from radiation exposure is generally small.

A CT scan in a pregnant woman poses no known risks to the baby if the area of the body being imaged isn’t the abdomen or pelvis. In general, if imaging of the abdomen and pelvis is needed, doctors prefer to use exams that do not use radiation, such as MRI or ultrasound. However, if neither of those can provide the answers needed, or there is an emergency or other time constraint, CT may be an acceptable alternative imaging option.

In some patients, contrast agents may cause allergic reactions, or in rare cases, temporary kidney failure. IV contrast agents should not be administered to patients with abnormal kidney function since they may induce a further reduction of kidney function, which may sometimes become permanent.  

Children are more sensitive to ionizing radiation and have a longer life expectancy and, thus, a higher relative risk for developing cancer than adults. Parents may want to ask the technologist or doctor if their machine settings have been adjusted for children.

Dedicated Breast CT Scanner: NIBIB is funding research for development of a dedicated breast CT scanner that allows the breast to be imaged in 3D and could help radiologists detect hard-to-find tumors. The scanner produces a radiation dose comparable to that of a standard x-ray mammogram and doesn’t require compression of the breast. In this breast CT scanner, a woman lies prone in a specially designed large table with her breast suspended in a special opening in the scanning bed. The scanner rotates around the breast, without passing through the chest, thus reducing the radiation that would be delivered to the chest in a conventional CT scanner. 

Reduction in Radiation from Routine CT Scans: NIBIB put out a call for researchers to submit groundbreaking ideas that will help to radically decrease the amount of radiation used in CT scans. Five new projects are underway from this new funding opportunity, representing creative, innovative, interdisciplinary approaches that would not have been funded otherwise.

 

Authors are welcome to submit their manuscripts. Submit manuscript at https://www.scholarscentral.org/submission/insights-medical-physics.html (or) as an e-mail attachment to medicalsci@scholarlymed.com or medicalsci@imedpub.com

 

Media contact

Eliza Miller

Managing Editor

Journal of Medical Physics and Applied Sciences